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1   INTRODUCTION   

ome of the tasks that cannot be solved effectively by 
conventional simulation have become tractable by extending 
the simulation to operate a in symbolic domain. Symbolic 

simulation involves introducing an expanded set of signal values 
and redefining the basic simulation functions to operate over this 
expanded set. This enables the simulator evaluate a range of 
operating conditions in a single run. By linearizing the circuits with 
lumped parameters at particular operating points and attempting 
only frequency domain analysis, the program can represent signal 
values as rational functions in the s ( continuous time ) or z 
(discrete time) domain and are  generated as sums of the products 
of symbols which specify the parameters of circuits elements [2 – 
4]. Symbolic formulation grows exponentially with circuit size and 
it limits the maximum analyzable circuit size and also makes more 
difficult, formula interpretation and its use in design automation 
application [5 – 10]. This is usually improved by using 
semisymbolic formulation, which is symbolic formulation with 
numerical equivalent of symbolic coefficient. Other methods of 
simplification include simplification before generation (SBG), 
simplification during generation SDG, and simplification after 
generation (SAG) [11 – 17]. 

Symbolic response formulation of electrical circuit may be 
classified broadly as modified nodal analysis (MNA) [18], 
sparse tableau formulation and state variable formulation. The 
state variable method was developed before the modified nodal 
analysis, it involves intensive mathematical process and has 
major limitation in the formulation of circuit equations. Some of 
the limitations arise because the state variables are capacitor 
voltages and inductor currents [19]. The tableau formulation  

 
 

  ———————————————— 

 Okonkwo and P. I. Obi are P. G. Scholars, in Dept. Of Elect. 

Engineering, Anambra State University, Uli. Nigeria. 

      G. C Chidolue and S. S. N. Okeke are Professors in Dept. Of  

Electrical Engineering, Anambra State University, Uli. Nigeria. 

 
 
 
has a problem that the resulting matrices are always quite 
large and the sparse matrix solver is needed. Unfortunately, 
the structure of the matrix is such that coding these routine are 
complicated. MNA despite the fact that its formulated 
network equation is smaller than tableau method, it still has a 
problem of formulating matrices that are larger than that 
which would have been obtained by pure nodal formulation 
[20]. In this paper a new nodal analytical method which is 
structured for easy simulation is introduced. 

2 TRANSIENT NODAL EQUATIONS  

In this paper a nodal analytical method is introduced 
which may be used on linear or linearized RLC circuit and 
can be computer applicable and user friendly. The 
simplicity of the new transient nodal formulation lies in the 
fact that minimal node index is enough to formulate 
transient equation (1). Also standard method of building 
steady state nodal admittance bus is just needed to build 
the s – domain admittance bus while the branch source current 
are modified to its branch effective transient source current which 
comprises of the vector sum of the actual source current, its s – 
domain equivalent and the corresponding s – domain branch 
storage element induced current source due to transient inception 
(2). When these are done a complete transient nodal circuit 
equation can easily be formulated. In this paper, this new method 
is called s – domain nodal method of branch effective current 
source. Simplicity, compactness and economical is the advantage 
of the newly formulated mesh equation.   

    1                                                )s(J)s(V)s(Y e  

where  

    2                                            )s(J)s(J)s(J Ie   

where also Y(s) is the Auxiliary admittance bus, s – domain 
equivalent of nodal admittance, Je(s) is the transient nodal 
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equivalent current source, J(s) is the actual steady state nodal 
current source vector transformed to s – domain, and Ei(s) is the 
transient branch sum dc induced source current  mesh vector at  
the instant of transient inception due to the constitutive sum 
effect of branch storage elements on  dc current flowing in these 
respective branches  around various meshes at that instant of 
transient.. 

2.1    Nodal Circuit Equation Formulation  

In this analysis branch companion model for R L C is 
derived using laplace transform and then a generalized s- 
domain nodal equation is configured which is essentially  
modeled with a modified source current, modification and 
derivation are follow  

consider a three node circuit in fig 1, the generalization of 
nodal analysis of n th node  may be demonstrated  by forming 
equations of Kirchhoff’s current law at the three various 
nodes, thus 

 
For Node 2 

 

 

 3                             0         iii              541   

 
For   i4      

The constitutive effect of the branch elements is as follows 
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taking the laplace transform of equation (4) 
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substituting equation (6) in (5) and simplifying to get 
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.  
similarly i1 
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similarly i5 
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The sum of the current flowing onto node 1 may be 

obtained by adding equation (9), (11) and (12) to get 
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For Node 2 

Similarly, the Kirchhoff’s current equation for node 2 
may be written as follows 
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For Node 3 

Similarly, the Kirchhoff’s current equation for node 3 
may be written as follows 
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equations (13), (14)and (15) are combined to get the nodal 
equation for fig 1 circuit as follows 

    16     

)s(J

)s(J

)s(J

)s(V

)s(V

)s(V

)s(Y)s(Y)s(Y

)s(Y)s(Y)s(Y

)s(Y)s(Y)s(Y

3)eN(

2)eN(

1)eN(

3

2

1

333231

232221

131211


















































 

 

     
 

)s(Y)s(Y)s(Y

(s)Y(s)Y(s)Y

)s(Y)s(Y)s(Y

17                            (s)Y(s)Y(s)Y(s)Y

(s)Y(s)Y(s)Y(s)Y

(s)Y(s)Y(s)Y(s)Y

63223

53113

42112

65333

64222

54111













 

 
Figure 1: Three Nodes, Three Mesh Rlc Electrical Circuit. 



International Journal of Scientific & Engineering Research, Volume 3, Issue 10, October-2012                                                                                         3 
ISSN 2229-5518 
 

IJSER © 2012 

http://www.ijser.org 

 

 

    18                    

(s)J(s)J(s)JJ

(s)J(s)J(s)JJ

(s)J(s)J(s)JJ

(e)6(e)5(e)3(eN)3

(e)6(e)4(e)2(eN)2

(e)5(e)4(e)1(eN)1







 

2.2 GENERALIZED MATRIX FOR TRANSIENT N – TH 

NODAL EQUATION 

Equation (16) may be used to generalize the nodal solutions 
n – th node in laplace frequency domain when all the branch 
effective source currents have been formulated as follows. 
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2.3 Generalized Compact Form For Transient N 
– Th Nodal Equation 

The generalized compact form of the equation (19) is thus as 
follows 
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Y(s) is laplace frequency domain admittance bus, the 
admittance could be built from fig 2 using any standard 

method of building an admittance bus so far the branch 
admittances Yk(s) of the circuit are evaluated as in equation 
(25). In this paper it is called the s – domain auxiliary 
impedance bus. 
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V(s) and Je(s) are the vector of nodal transient voltage and 
transient nodal effective current source respectively, all in 
frequency domain. 

 

 

Definitions 

k=1, 2- - - (K – th) branch that are incident on (n – th) node n=1, 2 - 
- - (N – th). 

Ik(0) → is the dc current flowing in the (k – th)  branch at the 
instant of  transient. 

Ek (s) → is the Laplace transform of the source voltage in the (k – 
th) branch. 

Z(C)k(s) → is the net transfer impedance for the transient dc 
quantities in the frequency domain due to the energy 
storing components in the (k – th) branch Z(C)k(s) 
transforms the dc current Ik(0) flowing in (k – th) branch 
to transient dc source voltage E(I)k(s) in that branch.  

E(I)k(s) → is the transient dc induced source voltage in the (k – th)  
branch at  the instant of transient inception due to the 
constitutive effect of the branch transient impedance 
operator Z(C)k(s)  on the dc current Ik(0)  flowing in that 
branch  at that instant.  

E(e)k(s) → is the effective source voltage in the (k – th) branch due 
to the net effect of source voltage and the induced dc 
source voltage during transient in frequency domain.7 

J(e)k(s) → is the effective source current in the (k – th) branch ource 

 
Fig 2: S – Domain Nodal Equivalent Diagram. 
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current during  transient in frequency domain. 
J(e)n(s) → is the sum of the effective source in all the (k – th) 

branches incident ondue to the net effect of source 
current and the induced dc s the (n – th) node. 

3 ANALYSIS PROCEDURES 

1. Calculate the steady state branch current. 
2. Transform all the branch admittances to their s – domain 

equivalents. 
3. transform all the branch voltage sources to their s – 

method(use laplace transformation. 
4. Calculate the branch dc driving point impedance 

Z(c)k(s),equation (10b)and use equation (10c) to calculate 
the branch dc induced branch source voltage. 

5. Use equation (10c) to calculate equivalent transient 
current source. 

6. Draw the s – domain equivalent of the RLC circuit by 
replacing the steady state circuit admittances with their s 
domain equivalents as they are calculated in step two. 
Also replace the branch steady state source current with 
their branch transient equivalent source current as 
calculated in step five. 

7. From the s – domain transient equivalent circuit 
diagram, use any of the steady state method of 
formulating nodal equation to formulate s – domain 
transient nodal equation. It is worthy to note that 
formulated s – domain equivalent circuit is structurally a 
mere corollary of steady state circuit diagram. This is 
also true between the formulated transient nodal 
equation and the steady state mesh equation. 

8. Form equation (16) and solve for V(s) using Cramer’s 
rule. 

9. Transform V(s) to time domain equivalent using laplace 
inverse transform. Eg. in Matlab, 

 23                ))s(V(ilap)t(V             

 from this nodal voltages could easily be obtained at any         
instant. 

4   TEST CIRCUIT  

An earth faulted 100 kV - double end fed 100 km single 
transmission line was used for verification of the formulated s – 
domain transient nodal equation. In this analysis fault position is 
assumed to be 60%. 

 

 

Test Circuit Parameters 

Generator 1 

E1(t)=10x104sin(t),  ZG1=(6+j40), S=1MVA 

Generator 2 
E2(t)=0.8|E1|sin(t+450),  ZG2=(4+j36), S=1MVA 
Line Parameters 
Rs=0.075 /km,   Ls=0.04875 H/km 
Gs=3.75*10-8 mho/km,      Cs=8.0x10-9F/km 
Line length=100 km,  Fault position = 60% 

4.1 Modeling 

A single pi section was adopted as a model for the test 
circuit. Normally the model is characterized with constant 
parameter, shunt capacitance of transmission line is included in 
the analysis while shunt conductance is neglected. The equivalent 
circuit of the test circuit is below fig 4. 

 

   5     TRANSIENT SIMULATION 

5.1 SYMBOLIC SIMULATION WITH FORMULATED 

EQUATION 

In this paper the transient nodal voltages were simulated by 
using the described formulation (s – domain nodal equation by 
method of branch effective transient current source). Analysis 
procedures of section 3 were used to calculate the s – domain 
rational functions of the nodal voltages (19). The obtained s – 
domain rational functions were transformed to close form 
continuous time functions using laplace inverse transformation. 
Discretizations of the close form continuous time functions were 
done to obtain to plot the nodal voltage response graphs. 

5.2 Simpowersystem Simulation Of Test Circuit 

To validate the formulated transient nodal equation, a 
simulation of the earth faulted double end fed, single 
transmission line were also performed using Matlab 
simpowersystem software to obtain the circuit transient nodal 
voltage responses. Results were compared with the responses 
obtained from the symbolic simulations using the formulated 
transient nodal equation. 

6     RESULTS 

Nodal voltage response were simulated using the formulated 
nodal equation and also using simpowersystem package, all 
simulation were done using Matlab 7.40 mathematical tool. 
Simulated responses by these methods for the earth faulted 

     
Fig 3: Earth faulted Single line  

 
Fig 4: Single line equivalent circuit (PI model) for  
          earth faulted transmission line. 
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double end fed single line transmission were obtained and shown 
in fig 5 through fig 12. Possible data taking point of node 1and 
node 3 were taken for various simulating conditions. Simulating 
conditions included; zero initial condition, non – zero initial 
condition, high resistive (1000) fault but at zero initial condition, 
and 1 sec. simulation. All simulations were done, except 
otherwise stated on 100km line at 60% fault position and 5  
earth resistive fault. Sampling interval for the formulated 
equation simulation is 50 S while that of the simpowersystem 
simulation is at 5 S. The overall result showed almost 100% 
conformity between new nodal symbolic formulation and the 
simpowersystem simulation. 

Test Circuit Simulated Nodal Voltage Response 
Graphs:  

100 km Line, Fault Position=60% and 5 Resistive Earth Fault. 
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Fig 4: Simulation of Nodal Voltages Versus  
         Time; 0% Initial Condition.  

 
Fig 5: Simulation Of Nodal Voltages Versus  
          Time; 0% Initial Condition 

 
Fig 6: Simulation of Nodal Voltages versus Time;  
         Initial Conditions, 0.033 Sec of Steady 
          State Run 

 
Fig 7: Simulation of Nodal Voltages versus Time;  
          Initial  Conditions, 0.033 Sec of Steady   
           State Run 

 
Fig 8: Simulation of Nodal Voltages versus Time; 

           0% Initial Condition, and 1000 
           Resistive Earth Fault. 
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7 CONCLUSIONS 

Simulation software has been formulated for transient 
simulation of RLC circuits initiated from steady state. The 
simulation software is especially useful for power circuits that are 
modeled with Pi – sections parameter. The result of the 
simulation of this new symbolic nodal software showed 
promising conformity with the existing simpowersystem package 
and has the advantage of being able to simulate imaginary initial 
conditions. Structurally the formulated nodal equation can easily 
be modified to simulate subtransient response of RLC circuits. 
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